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On the basis of most up-to-date literature data, this study

evaluated the influxes of dissolved organic carbon (DOC) to the

ocean. Using the DOC concentrations in 118 world rivers and

long-term average river discharges, we estimated the river

influxes of DOC to the coastal seas as 0.21 Pg C yr�1. This flux

was reduced to 0.19 Pg C yr�1 when we took into account DOC

removal during its transport into the Arctic. When we further

adopted an average removal rate of 10% for the rest of the river

DOC input into the coastal ocean, we obtained an estimate of

the global river DOC flux of 0.17 Pg C yr�1, which is at the lower

end of prior estimations. Considering the seasonal variation of

the river end-member DOC concentration, our current estimate

of the global river DOC discharge is subject to an uncertainty of

�30%.DOC fluxes into the ocean have significant spatial

variations in terms of their continents of origin, recipient

coastal seas, ocean basins and latitudinal zones. The highest

DOC flux was from South America into the western ocean

boundaries and eventually into the Atlantic Ocean. The most

abundant riverine DOC discharge was in the low latitudinal

zones with 38.0 and 90.0 Tg C yr�1 in the 0–308 N and 0–308 S

zones, respectively, the combination of which accounted for

�62% of the global DOC input. On the basis of these updated

fluxes, we estimated a global river mean DOC concentration

of 5.29 mg L�1.
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Introduction
Riverine organic carbon concentrations and their variations

reflect terrestrial ecosystem changes, while their export

into the ocean is an important constraint of the oceanic

carbon budget and cycling. There have been many
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attempts throughout the past few decades to approach this

riverine organic carbon flux [1–7,8�,9,10��,11] either via the

fluvial concentrations or organic carbon losses from terres-

trial ecosystems (Table 1).

Degens and Ittekkot [12] estimate the global dissolved

organic carbon (DOC) input from rivers to the coastal

seas as 0.11–0.25 Pg C yr�1. A more recent assessment by

Cauwet [9], taking into account data from the Arctic

rivers collected in the 1990s, determines a DOC flux

of 0.25 Pg C yr�1. Cai [13] adopts a DOC flux of

0.25 Pg C yr�1 primarily based on the data from

Meybeck [4,5].

Another approach to estimate riverine DOC fluxes is

based on the loss rate of soil organic carbon from the

drainage basin. Ludwig et al. [7] note that the DOC flux is

mainly a function of discharge, basin slope, and the

carbon content of the soils in the drainage basin, and

estimate an annual riverine DOC flux to the coastal

oceans of 0.21 Pg C yr�1. Along this line, Harrison et al.
[10��] predict that 0.17 Pg C yr�1 is exported by rivers to

the coastal zones as DOC. Aitkenhead and McDowell

[8�], using annual fluxes of DOC from 164 watersheds,

which were grouped into 15 biome types, discover a

strong linear relationship between the mean annual fluxes

of DOC and the mean soil C/N ratios of those biomes.

Their linear model predicts a DOC flux to the coastal seas

of 0.36 Pg C yr�1, which is higher than other estimates.

Schlesinger and Melack [1] estimate the transport of total

organic carbon (TOC) in the world’s rivers as

0.37 Pg C yr�1 by inventorying and extrapolating data

on losses of carbon per unit volume of river discharge

from 12 intermediate and large rivers. They also derive a

slightly higher number, 0.41 Pg C yr�1, from measure-

ments of fluvial losses of organic carbon per unit area of

land in various ecosystem types. If we assume an equal

partitioning [3,6,13] between particulate organic carbon

(POC) and DOC in TOC, the riverine DOC transport to

the coastal seas would be around 0.19–0.21 Pg C yr�1.

Taken together, the estimated range of riverine DOC

fluxes into the coastal oceans is still quite large (Table 1).

Major challenges in reliably estimating riverine DOC

fluxes are related to a few issues. First of all, most of

the above estimates are based on a similar data set from

the world’s major large rivers with other rivers occasion-

ally included. The estimates also neglect the biogeo-

chemical reactions within the estuaries and sometimes
www.sciencedirect.com
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Table 1

Riverine dissolved organic carbon (DOC) flux to the global coastal ocean.

Reference Flux (Pg C yr�1) Remarks

Meybeck, 1981, 1982 [3,4] 0.22 Typology method based on the average DOC contents in various climatic zones

Mantoura and Woodward, 1983 [2] 0.78 Extrapolated based on the DOC flux of the Severn River catchment only, assuming

that the global DOC export accounts for 1% of the world terrestrial primary

production

Smith and Hollibaugh, 1993 [6] 0.20 Assigned a nominal value for the riverine DOC flux based on previous estimates

Ludwig et al., 1996 [7] 0.21 Based on an empirical relationship between the observed organic carbon

fluxes and the climatic, biologic, and geomorphologic patterns characterizing

the river basins

Aitkenhead and McDowell, 2000 [8�] 0.36 Based on DOC fluxes from 164 watersheds, which were grouped into 15 biome

types, and established a relationship between DOC flux and soil C:N ratio on

this biome basis

Cauwet, 2002 [9] 0.25 Based on the DOC fluxes from world large rivers and the data from the Arctic

rivers collected in the 1990s

Harrison et al., 2005 [10��] 0.17 Based on the Global Nutrient Export from Watersheds (NEWS) Model

Seitzinger et al., 2005 [11] 0.17 Based on the Global Nutrient Export from Watersheds (NEWS) Model

Cai, 2011 [13] 0.25 Adopted based on previous estimates

This study 0.17 Based on the DOC concentrations in 118 world rivers and long term average

river discharges with consideration of estuarine DOC removal
those within the upper river depending on the location

where the DOC concentrations were measured. Further-

more, these estimates do not take into account the

dynamic seasonal changes in DOC concentrations in

the river end-members when synthesizing at the global

scale.

During the past few decades, there has been a significant

accumulation of DOC data from river and estuarine sys-

tems all over the world, and it is thus timely to synthesize

the most updated DOC fluxes into the ocean. It is also

fortunate that we now have a very comprehensive river

discharge data set [14��,15��], which will clearly improve

our estimates. This paper thus seeks to adopt the most

updated river discharge data and riverine DOC concen-

tration data from the world’s rivers in order to reexamine

DOC fluxes. We emphasize the spatial distribution of

riverine fluxes in terms of latitude, continent, ocean basin,

and their immediate recipient — the coastal sea.

We will also attempt to adjust the net input fluxes into the

coastal seas by considering the estuarine behavior of DOC

given the recently recognized significant removal pro-

cesses of DOC within the Arctic regime. Moreover, under

global climate changes and the likelihood of intensified

hydrological circulation, we have seen the redistribution of

fresh water discharges into different ocean basins [15��].
Therefore, we will also assess the potential changes of

riverine DOC fluxes induced by such redistribution of

fresh water discharge during the past few decades.

Coastal sea classification and data sources
Coastal sea classification

It is clear that the coastal sea has a high concentration

of boundary exchanges and processes, and represents

the most dynamic region both in terms of physics and
www.sciencedirect.com 
biogeochemistry (e.g. Robinson and Brink [16]; Liu et al.
[17]). In this study, we adopted the classification of

Robinson and Brink [16], whereby the world’s coastal

seas are grouped into four major categories: western and

eastern ocean boundaries, polar, semi-enclosed seas/

islands and Australia (Figure 1). Adjustments have been

made to assign the East China Sea as a western boundary

current marginal sea and the entire South China Sea as a

semi-enclosed marginal sea.

The western ocean boundaries are characterized by

strong western boundary currents, relatively wider

shelves, and abundant river discharges [18–20]. The east-

ern ocean boundaries are clearly marked by upwellings

and narrow shelves [21]. Polar ocean coastal boundaries,

notably the Arctic, are characterized by abundant river

discharge, wider shelves, as well as strong seasonality [22].

The semi-enclosed seas are characterized by limited

exchanges with open oceans and thus possess relatively

longer water residence times [23], which allows for bio-

geochemical reactions to occur, and anthropogenic signals

may also be accumulated. Although the yearly DOC

discharged into the coastal ocean (0.17–0.78 Pg C yr�1,

Table 1) is small compared to the total oceanic DOC pool

(662 Pg C) [24], it represents important heterogeneous

loadings and thus cannot be downplayed [9]. We there-

fore summarized the fluxes into these pan-regions for use

in future studies considering the river-estuary-coastal

ocean and open ocean interior as a carbon continuum.

Given the fact that the coastal sea typically has a higher

DOC production rate, the freshly produced DOC therein,

when exported to the open ocean interior, may serve as an

important carbon pump [25]. At the same time, DOC

transport and transformation through the river-coastal

sea-open ocean continuum remains the primary challenge

in understanding global carbon cycling.
Current Opinion in Environmental Sustainability 2012, 4:170–178
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Figure 1
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The world’s major river systems and shelf/marginal seas (1. Arabian Sea; 2. Arafura Sea; 3. Baffin Bay; 4. Baltic Sea; 5. Banda Sea; 6. Barents Sea; 7. Bay

of Bengal; 8. Bay of Biscay; 9. Beaufort Sea; 10. Bering Sea; 11. Black Sea; 12. Bohai Sea; 13. Caribbean Sea; 14. Celebes Sea; 15. Celtic Sea; 16. Chukchi

Sea; 17. Coral Sea; 18. East China Sea; 19. East Siberian Sea; 20. Greenland Sea; 21. Gulf of Alaska; 22. Gulf of California; 23. Gulf of Guinea; 24. Gulf of

Mexico; 25. Gulf of St Lawrence; 26. Hudson Bay; 27. Java Sea; 28. Kara Sea; 29. Labrador Sea; 30. Laptev Sea; 31. Mediterranean Sea; 32. North Sea;

33. Norwegian Sea; 34. Persian Gulf; 35. Red Sea; 36. Sea of Japan; 37. Sea of Okhotsk; 38. South China Sea; 39. Sulu Sea; 40. Yellow Sea).
Freshwater discharge

The total global freshwater discharge, excluding that from

Antarctica and Greenland, is about 37 288 � 662 km3 yr�1.

This estimate is based on river discharges from 921 rivers,

or 73% of the total global discharge, and the records of

the river discharges were from 1948 to 2004 [14��,15��].

We categorized the 925 rivers from Dai et al. [15��] based

upon their spatial distribution in terms of different con-

tinents, coastal ocean classifications, ocean basins, and

latitudes. In each category, we estimated the subtotal

river discharge and its proportion to the total discharge of

the 925 rivers from Dai et al. [15��], and then we upscaled

the subtotal discharge of each category to a global scale.

The details of the calculation are found in the caption to

Figure 2.

We then estimated the respective annual discharge

from Africa, Asia, Oceania, Europe, North America,

and South America as 3596, 9838, 592, 2162, 6271 and

14 828 km3 yr�1; and the total annual discharge to the

western boundaries, eastern boundaries, polar bound-

aries, semi-enclosed seas/islands and Australia was esti-

mated to be 19 152, 5348, 5735 and 7052 km3 yr�1. Most

of the river discharge to the western boundaries comes

from the Amazon River which provides 5390 km3 yr�1
Current Opinion in Environmental Sustainability 2012, 4:170–178 
[15��]. Annual fresh water discharge into the four ocean

basins, the Arctic, Atlantic, Indian and Pacific was 3658,

20 006, 4532 and 9092 km3 yr�1. Finally, these river dis-

charges were distributed between different latitudes

in terms of their river mouth locations and were

8902 km3 yr�1 at 0–308 N, 14 179 km3 yr�1 at 0–308 S,

7826 km3 yr�1 at 30–608 N, 1483 km3 yr�1 at 30–608 S,

and 4898 km3 yr�1 at 60–908 N. Again, the tropical Ama-

zon River was the source of the large discharge to the

0–308 S zone, even though the river plume turns largely

into the 0–308 N zone.

DOC data sources and flux estimation

The DOC data used in this synthesis were from 118 rivers

and were updated to the measurements in 2009 with

many data collected in the past 40 years. Whenever

possible and justifiable, more up to date data were

adopted. For example, Richey et al. [26] report an average

DOC concentration of 4.46 mg L�1 in the Amazon River,

while according to Coynel et al. [27], the average DOC

concentration of the Amazon is 5.70 mg L�1 (calculated

from DOC flux and river discharge). Similarly, the aver-

age DOC concentration of the Mississippi River is

8.79 mg L�1 in one previous study [28], but 4.2 mg L�1

from Dubois et al. [29], the value which we adopted in

this study.
www.sciencedirect.com
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Figure 2
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Spatial distribution of total river discharge (blue), average DOC concentration (red), and DOC flux (green) in terms of their river mouth origins by

continent (a), recipient shelf seas (b), ocean basins (c), and latitudinal zones (d). The calculation of the total river discharge was as follows, using the

example of African rivers. First, we considered all of the African rivers with available discharge data listed in Dai et al. [15��]. Then, we summed up the

discharges of these African rivers (called the subtotal) and calculated the subtotal’s proportion of the total discharge of the 925 rivers. Because the

total discharge of the 925 rivers was less than the global total discharge, we then upscaled the subtotal discharge of African rivers to a global scale,

assuming that the proportion of the total discharge of African rivers in global total discharge was equal to the proportion of the subtotal discharge of

African rivers in the total discharge of the 925 rivers.

(a) AF: Africa; AS: Asia; OC: Oceania; EU: Europe; NA: North America; SA: South America. The discharge from the respective continent was based on

84 rivers with a discharge of 3596 km3 yr�1 from Africa; on 167 rivers with a discharge of 9838 km3 yr�1 from Asia; on 86 rivers with a discharge of

592 km3 yr�1 from Oceania; on 187 rivers with a discharge of 2162 km3 yr�1 from Europe; on 193 rivers with a discharge of 6271 km3 yr�1 from North

America; and on 206 rivers with a discharge of 14 828 km3 yr�1 from South America. The average DOC concentration and DOC flux were estimated to

be 8.03 � 1.89 mg L�1 and 28.9 � 6.8 Tg C yr�1 from Africa based on 11 rivers; 5.32 � 0.29 mg L�1 and 52.4 � 2.8 Tg C yr�1 from Asia based on 26

rivers; 4.76 � 1.60 mg L�1 and 2.82 � 0.95 Tg C yr�1 from Oceania based on two rivers; 7.71 � 0.64 mg L�1 and 16.7 � 1.4 Tg C yr�1 from Europe

based on 25 rivers; 4.22 � 0.13 mg L�1 and 26.5 � 0.8 Tg C yr�1 from North America based on 49 rivers; and 5.47 � 1.85 mg L�1 and

81.1 � 27.4 Tg C yr�1 from South America based on five rivers.

(b) W: western ocean boundaries; E: eastern ocean boundaries; P: polar ocean boundaries; S: semi-enclosed seas, islands and Australia. See text for

details on the classification of the shelf/marginal seas. The discharge into the respective shelf/marginal sea types was based on 322 rivers with a

discharge of 19 152 km3 yr�1 into the western ocean boundaries; on 158 rivers with a discharge of 5348 km3 yr�1 into the eastern ocean boundaries;

on 115 rivers with a discharge of 5735 km3 yr�1 into the polar ocean boundaries; and on 326 rivers with a discharge of 7052 km3 yr�1 into the semi-

enclosed seas, islands and Australia. The average DOC concentration and DOC flux into the respective shelf/marginal sea types were estimated to be

5.02 � 0.55 mg L�1 and 96.1 � 10.4 Tg C yr�1 in western ocean boundaries based on 35 rivers; 5.97 � 1.00 mg L�1 and 31.9 � 5.4 Tg C yr�1 in

eastern ocean boundaries based on 17 rivers; 7.94 � 0.44 mg L�1 and 45.5 � 2.5 Tg C yr�1 in polar ocean boundaries based on 28 rivers; and

4.60 � 0.22 mg L�1 and 32.5 � 1.5 Tg C yr�1 in semi-enclosed seas, islands and Australia based on 38 rivers.

(c) The discharges into the Arctic, Atlantic, Indian, and Pacific Oceans were 3658, 20 006, 4532, 9092 km3 yr�1, respectively (see Dai and Trenberth [14��],

Table 4). The average DOC concentration and DOC flux into the respective ocean basin were estimated to be 8.36 � 0.72 mg L�1 and 30.6 � 2.6 Tg C yr�1

into the Arctic based on 12 rivers; 5.85 � 0.36 mg L�1 and 117 � 7 Tg C yr�1 into the Atlantic based on 70 rivers; 4.19 � 0.51 mg L�1 and

19.0 � 2.3 Tg C yr�1 into the Indian based on 11 rivers; and 3.36 � 0.19 mg L�1 and 30.5 � 1.7 Tg C yr�1 into the Pacific based on 25 rivers.

(d) The discharge into the respective latitudinal zone was based on 203 rivers with a discharge of 8902 km3 yr�1 at 0–308 N; on 221 rivers with a discharge

of 14 179 km3 yr�1 at 0–308 S; on 312 rivers with a discharge of 7826 km3 yr�1 at 30–608 N; on 84 rivers with a discharge of 1483 km3 yr�1 at 30–608 S; and

on 103 rivers with a discharge of 4898 km3 yr�1 at 60–908 N. The average DOC concentration and DOC flux into the respective latitudinal zone were

estimated to be 4.27 � 0.29 mg L�1 and 38.0 � 2.6 Tg C yr�1 at 0–308 N based on 28 rivers; 6.35 � 1.43 mg L�1 and 90.0 � 20.2 Tg C yr�1 at 0–308 S

based on nine rivers; 3.87 � 0.12 mg L�1 and 30.3 � 0.9 Tg C yr�1 at 30–608 N based on 63 rivers; 5.20 � 2.32 mg L�1 and 7.71 � 3.44 Tg C yr�1 at 30–

608 S based on three rivers; and 8.02 � 0.60 mg L�1 and 39.3 � 3.0 Tg C yr�1 at 60–908 N based on 15 rivers.

www.sciencedirect.com Current Opinion in Environmental Sustainability 2012, 4:170–178
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These 118 rivers with available DOC concentrations

accounted for �48% of the global total discharge, and

covered �54% of the global total drainage land areas.

These data are summarized in supplementary material.

The DOC flux calculations showing the spatial distri-

bution from different continents, latitudes, and/or into

different coastal oceans or ocean basins were based on

individual river DOC fluxes and their summation in each

category. We first calculated the discharge weighted

average DOC concentration based on the summation

of individual river discharges and DOC fluxes of each

category. Such average DOC concentrations were then

multiplied by the total river discharge of each category

(see ‘Freshwater discharge’ section) to estimate the DOC

flux. Finally, global river DOC flux was obtained by

adding up all of the fluxes in each category.

DOC influxes from rivers
Figure 2 presents the spatial distribution of DOC fluxes in

terms of the continent from which the river mouth

originates, the recipient coastal seas and ocean basins.

Also presented are the DOC fluxes distributed in differ-

ent latitudes. Such spatial distribution of DOC input is

critically important for examining the terrestrial sources

of organic carbon and their potential linkage with oceanic

carbon cycling because any redistribution of these fluxes

would impact on the reactivity of the oceanic DOC pool

and potentially the microbial community in the ocean

that is fueled by DOC.

Riverine DOC fluxes from different continents

As shown in Figure 2(a), the discharge weighted average

DOC concentration in rivers originating from Africa

was 8.03 � 1.89 mg L�1 based on 11 river DOC concen-

trations. The value was 5.32 � 0.29 mg L�1 in Asia,

4.76 � 1.60 mg L�1 in Oceania, 7.71 � 0.64 mg L�1 in

Europe, 4.22 � 0.13 mg L�1 in North America, and

5.47 � 1.85 mg L�1 in South America. The high DOC

concentration in African rivers may be associated with

the vegetation they flow through and the overall low basin

slope [27]. In Europe, the relatively high river DOC

concentration might be related to the relatively strong

impact of anthropogenic activities [30]. Correspondingly,

the DOC fluxes were 28.9 � 6.8, 52.4 � 2.8, 2.82 � 0.95,

16.7 � 1.4, 26.5 � 0.8, and 81.1 � 27.4 Tg C yr�1, respect-

ively, with the highest fluxes emanating from South

America and Asia. The summation of the annual global

riverine DOC flux was 208 � 28 Tg C yr�1 or 0.21 �
0.03 Pg C yr�1.

Riverine DOC fluxes into different shelf/marginal seas

The average DOC concentration of the rivers to the

western boundaries continental margins was estimated

to be 5.02 � 0.55 mg L�1, 5.97 � 1.00 mg L�1 to the east-

ern boundaries continental margins, 7.94 � 0.44 mg L�1 to

the polar boundaries, and 4.60 � 0.22 mg L�1 to the semi-
Current Opinion in Environmental Sustainability 2012, 4:170–178 
enclosed seas (Figure 2(b)). Rivers flowing into the polar

regions had the highest DOC concentrations. In decreasing

order, the DOC fluxes were 96.1 � 10.4, 45.5 � 2.5,

32.5 � 1.5, and 31.9 � 5.4 Tg C yr�1 into the western

boundaries, polar boundaries, semi-enclosed seas, and

eastern boundaries. The total DOC flux was then esti-

mated to be 206 � 12 Tg C yr�1 or 0.21 � 0.01 Pg C yr�1.

Riverine DOC fluxes in different ocean basins

The average DOC concentration of the rivers flowing

into the Arctic, Atlantic, Indian and Pacific Oceans

were 8.36 � 0.72, 5.85 � 0.36, 4.19 � 0.51, and 3.36 �
0.19 mg L�1 and, as expected, rivers flowing into the polar

regions generally had the highest DOC concentrations due

to the high organic carbon content in the basin soil and

permafrost [31]. In decreasing order, the DOC fluxes were

117 � 7, 30.6 � 2.6, 30.5 � 1.7, and 19.0 � 2.3 Tg C yr�1

into the Atlantic, Arctic, Pacific, and Indian Oceans

(Figure 2(c)). Total DOC flux was then estimated to be

197 � 8 Tg C yr�1 or 0.20 � 0.01 Pg C yr�1.

Riverine DOC fluxes in different latitudinal zones

The overall trend in terms of DOC concentration was as

follows: the highest DOC occurred in high latitudes and

lower DOC in lower latitudes excluding the 0–308 S zone,

where the Amazon River had a high DOC and dominated

the zonal DOC concentration and flux (Figure 2(d)). The

most abundant riverine DOC discharges occurred in

the low latitudinal zones with 38.0 � 2.6 and 90.0 �
20.2 Tg C yr�1 in the 0–308 N and 0–308 S zones, the

combination of which (0.13 � 0.02 Pg C yr�1) accounted

for 62% of the global DOC input. This estimate is com-

parable to Huang et al.’s result of 0.136 Pg C yr�1 ([32], this

issue). In the 30–608 N and 30–608 S bands, the flux was

30.3 � 0.9 and 7.71 � 3.44 Tg C yr�1. At the high latitudes

of 60–908 N, DOC flux was 39.3 � 3.0 Tg C yr�1. Note

that riverine input was negligible at high latitude in the

southern hemisphere. The extrapolated global DOC flux

was 205 � 21 Tg C yr�1 or 0.21 � 0.02 Pg C yr�1.

Discussion
Global mean river DOC concentration and uncertainties

associated with our flux estimates

No matter how we extrapolated, the DOC influx from

rivers remained tight, ranging from 0.20 to 0.21 Pg C yr�1.

This reflected the fact that DOC flux is predominantly

determined by river discharge. The global average river

DOC concentration was thus estimated to be

5.29 � 0.22 mg L�1. This is slightly lower than the prior

estimate of 5.75 mg L�1 [4].

Many river DOC concentrations are subject to strong

seasonality which, as mentioned above, represents one

of the major uncertainties in estimating DOC fluxes. For

example, the seasonal change in DOC concentrations in

the Changjiang is �40% (Lin J, MS thesis, Xiamen

University, 2007). The Sepik River has a DOC seasonal
www.sciencedirect.com
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variability of �13% [33], and the Mississippi River a

seasonal DOC change of up to �30% [29,34]. To obtain

a conservative estimation, here we assigned a seasonal

variation of 30% to the DOC river end-member at the

global scale based on the references (Lin J, MS thesis,

Xiamen University, 2007; and [29,33,34]), and, given an

estimated uncertainty of river discharge as 2% [15��], we

determined an uncertainty of global river DOC discharge

as �30%. Note that such assigned seasonality of DOC

river end-member concentration was based on a very

limited data set from several large rivers, which should

be better constrained.

Removal of DOC in the Arctic estuaries/shelves and

elsewhere

Dittmar and Kattner [31] estimate that the total riverine

DOC input into the Arctic Ocean is 18–26 Tg C yr�1

which is similar to that of the Amazon, and they also

suggest that there are practically no removal mechanisms

in the estuaries and shelves. Raymond et al. [35] note a

higher estimate of 25–36 Tg C yr�1. In our study, we

estimated that the total DOC flux discharged by rivers

into the Arctic Ocean was 31 Tg C yr�1 based on 12 large

Arctic rivers.

Recent studies observe substantial removal of terrestrial

DOC (tDOC) in the Arctic shelves [36��,37], and the first

order tDOC decay constant, l, is estimated to be

0.097 � 0.004 yr�1 [36��] or 0.06 yr�1 [37] for the western

Arctic. An earlier study [38] also observes a significant

portion of DOC in the colloidal fraction both at the river

end-member and during estuarine mixing, and a non-

conservative behavior both in the Ob and Yenisey Rivers

and in the Kara Sea. The removal rate is close to 30% in the

Ob River estuary [38]. On the basis of D14C-DOC, Ray-

mond et al. [35] reveal that Arctic rivers export a large

amount of young and presumably semi-labile DOC to the

Arctic Ocean. More recently, Letscher et al. [39��] report a

much more rapid removal rate constant of 0.24 � 0.07 yr�1

in the eastern Arctic Ocean, and further estimate that the

total tDOC input of 25 Tg C yr�1 [35] into the Arctic Basin

is reduced to 5.3–10.3 Tg C yr�1 before being transported

to the North Atlantic with a residence time of several years.

Alling et al. [40] report DOC removals of up to 10–20% in

the Lena River estuary and the Laptev Sea with a surface

water residence time of �2 months, while such removals

could be 30–50% along the East Siberian Sea shelf with

freshwater residence times of several years.

Taken together, we reasoned that a conservative estimate

of DOC removal in the Arctic estuaries would be around

20% and the total riverine DOC input into the Arctic

Ocean, that is, 31 Tg C yr�1, would be reduced to

24.5 Tg C yr�1. Such a removal term accounts for

approximately 3% of the global total DOC flux into the

coastal seas. With this estimate, the global total riverine

DOC flux was revised to 0.19 Pg C yr�1.
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Regarding DOC removal in the rest of the world’s estu-

aries, Amon and Benner [41] estimate �10% removal of

the riverine DOC in Rio Negro, the largest left tributary

of the Amazon River. Raymond and Bauer [42] report that

�10% of riverine DOC in the York River estuary is

removed by bacteria. Moran et al. [43] report a removal

rate of river DOC ranging from 1.7 to 17.7% in five

estuaries of the Southeastern United States. To obtain

a conservative estimate, if we further adopted an average

removal rate of 10% for estuarine DOC beyond the Arctic

based on the above literature, we obtained an estimate of

global river DOC flux of 0.17 Pg C yr�1, which is at the

lower end of prior estimates.

DOC influxes from submarine groundwater
discharge
In addition to surface water flow into the ocean, there has

been increasing evidence pointing towards submarine

groundwater discharge (SGD) into the coastal ocean. How-

ever, this groundwater contribution is difficult to quantify,

partly because there are very limited DOC data from the

subterranean estuaries where groundwater mixing with

seawater occurs. Most available DOC concentrations in

coastal groundwater have been determined in North Amer-

ica [44–50], and only a few studies focus on Africa [51,52],

Europe [53,54] and Australia [55]. Since the average DOC

is close (within the bounds of error estimation) from the

different continents above, we estimated that the global

average DOC was 5.9 � 2.5 mg L�1 in groundwater. Given

the global terrestrially derived fresh SGD ranges from 5 to

10% of the global river rate [56,57], SGD delivers 11–
22 Tg C yr�1 DOC to the coastal ocean globally.

Changes in riverine DOC fluxes into the ocean
According to Dai et al. [15��], global river discharge be-

tween 1948 and 2004 has declined at a rate of 6.96 km3 yr�1

during the past 57 years. This decrease in discharge

resulted in an accumulative DOC flux decrease of only

�1%. However, the change in discharge has not been

uniform between ocean basins. River discharge into the

Arctic has been changing at an increasing rate of

8.20 km3 yr�1 while the rate has been declining at a rate

of 1.64, 2.49 and 9.40 km3 yr�1 into the Atlantic, Indian and

Pacific Oceans [15��]. These changes in discharge resulted

in an accumulative DOC flux increase of 12.8% to the

Arctic, but a decrease by 0.5, 3.1 and 5.9% to the Atlantic,

Indian and Pacific Oceans. Because of the difference in

river end-member DOC concentration and in DOC com-

positions in the rivers from different latitudes, changes in

heterogenic loading would impact the carbon budgeting

and cycling in the coastal ocean and ocean basin on a global

scale. Moreover, such redistribution could have a signifi-

cant influence in the Arctic, which is particularly prone to

be increasingly vulnerable to climate change.

In addition to the observed fresh water redistribution

among ocean basins, there is also evidence for changes
Current Opinion in Environmental Sustainability 2012, 4:170–178
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in river DOC concentrations. For example, DOC con-

centrations in 22 UK upland waters have increased by an

average of 91% during the last 15 years [58]. Increases

have also occurred elsewhere in the UK, northern Europe

and North America. A range of potential drivers of these

trends are believed to be temperature, rainfall, acid

deposition, land-use, and nitrogen and CO2 enrichment

[58]. Clair et al. [59] suggest that DOC export from basins

in Canada might increase by 14% with a doubling in

atmospheric CO2. An additional factor rarely addressed in

rivers is direct loading from urban and industrial sources

[30,60]. Concentrations of DOC in New York’s Hudson

River have doubled over the past 16 years, implying a

substantial increase in net movement of organic carbon

from the watershed to New York Harbor and Bight [61].

Unfortunately, such changes at the global scale remain

difficult to assess.

Concluding remarks
By using the most up-to-date river discharge values and the

largest river DOC data set, this study provided an updated

riverine DOC flux into the coastal ocean of 0.17 Pg C yr�1.

This falls at the lower end of prior estimates. At the same

time, we saw a trend of river DOC increase in at least some

terrestrial ecosystems, likely caused by rising temperature

and atmospheric CO2, which warrants further attention,

particularly in the context of the oceanic organic carbon

pool and microbial activities therein.

Spatially distributed fluxes have been presented reflect-

ing the partitioning of organic loading into different

oceanic and coastal regimes. With the identified hydro-

logical circulation, such repartitioning might have signifi-

cant implications for oceanic biogeochemistry.
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