
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Environmental controlling mechanisms on bacterial abundance in the South China
Sea inferred from generalized additive models (GAMs)

Bingzhang Chen a,⁎, Hongbin Liu b, Bangqin Huang a

a State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, PR China
b Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

a b s t r a c ta r t i c l e i n f o

Article history:
Received 13 December 2011
Received in revised form 3 May 2012
Accepted 18 May 2012
Available online 29 May 2012

Keywords:
Heterotrophic bacteria
Generalized additive model
South China Sea

We modeled the abundance distribution of heterotrophic bacteria collected from 4 cruises in the northern
South China Sea using generalized additive models to infer the underlying mechanisms controlling bacterial
abundance and to predict bacterial abundance using environmental parameters that can be easily obtained.
We incorporated spatial coordinates, depth, month, chlorophyll (Chl) a concentration, temperature, salinity,
nutricline and mixed layer depth in the model, which captures the main features of the observations and ex-
plains 88% of the total variation of bacterial abundance. The most important factor affecting bacterial abun-
dance is chlorophyll, followed by salinity and nutricline depth, reflecting the importance of carbon and
nutrient sources to bacteria. Bacterial abundance shows a unimodal relationship with temperature and de-
creases with depth. All the functions are nonlinear. After controlling environmental parameters, bacterial
abundances are higher in fall and winter than in spring and summer and usually show an onshore–offshore
decreasing gradient, which probably signify transportation pathways of terrestrial organic matter to the sea
via atmospheric deposition. Comparisons of variograms between raw data and residuals of the model show
that positive autocorrelation at small scales is induced by both environmental similarity and geographic
proximity, while the negative autocorrelation at large scales is mostly contributed by environmental similar-
ity in remote water masses.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The South China Sea (SCS) is the second largest marginal sea in the
world and plays important roles in regulating regional climate and car-
bon budget owing to its vast area and volume (Kienast et al., 2001). The
carbon flux in upper ocean of the SCS is being investigated by a National
Basic Research Programof China named “Carbon Cycling in China Seas—
Budget, Controls and Ocean Acidification (CHOICE-C)” and this paper
reports the first series of results from studies on heterotrophic bacteria,
which are important players (e.g., decomposers of dissolved organic
matter, the foundation of the microbial food web, and major contribu-
tors to respiration) in the carbon system (Azam et al., 1983; Del Giorgio
and Williams, 2005). Here we loosely define heterotrophic bacteria as
prokaryotic cells without autofluorescence that can be detected by flow
cytometer and may include some Archaea (Li et al., 2004). The aim of
this paper is toward understanding environmental controlling mecha-
nisms on bacterial abundance.

The mechanisms controlling bacterial abundance are complex. Bac-
terial growth in the ocean can be limited by temperature, organic car-
bon, and inorganic nutrients (Pomeroy and Deibel, 1986; Rivkin and

Anderson, 1997). Bacterial abundance is also controlled by bacterivorous
grazers and bacteriophages (Azam et al., 1983; Proctor and Fuhrman,
1990). In the field, it is difficult to quantify the availability of the dissolved
organic matter readily available to heterotrophic bacteria in oligotrophic
environments because of the high uptake rate bymicrobes and lowambi-
ent level of nutrients that can be directly measured (Zubkov et al., 2008).
Determining the response of vital rates of diverse bacteria (most ofwhich
cannot be cultured) to environmental factors also poses a challenge to bi-
ologists but is essential in mechanistic modeling. These problems make
mechanistic modeling of bacterial abundancemore difficult than on phy-
toplankton (Barton et al., 2010; Fashamet al., 1990; Follows et al., 2007).
Conventional nitrogen–phytoplankton–zooplankton–detritus (NPZD)
models do not contain a bacterial compartment (Fasham et al., 1990;
Gan et al., 2010). While the compartment of detritus is assigned the
role as ‘decomposer’, it is not allowed to grow actively as bacteria do.

Estimation of phytoplankton biomass in terms of chlorophyll concen-
tration at large scales can be achieved by retrieving and analyzing satel-
lite images of ocean color (McClain, 2009), which however can hardly
work for heterotrophic bacteria. Heterotrophic bacteria show a strong
absorption peak in the red band which overlaps with the absorption
spectrum of water; while based on backscattering that can be linked
with particle size viaMie theory, a serious problem is to separate hetero-
trophic bacteria from other similar-sized particles such as cyanobacteria
and detritus especially in productive waters (Kostadinov et al., 2009).
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Modern statistical techniques provide an alternative approach to un-
derstanding environmental effects on bacterial dynamics and predicting
bacterial parameters using easily-obtainable parameters. Although they
do not provide explicit controlling mechanisms, they may give useful
hints in revealing the underlying mechanisms and their mathematical
predictions could be approximate to or even better than those from the
mechanistic models.

Generalized additive models (GAMs) allow one response variable
being fitted by several predictors in an additive manner (Hastie and
Tibshirani, 1989; Wood, 2006). The partial term of one predictor is
an unspecified function constructed from regression splines, which
have the advantage of having minimal integrated square secondary
derivatives (i.e., being smooth) and do not need to assume a priori
function. A penalty is added to the regression to control the degree
of smoothness of the fitting curve. GAMs thus attempt to attain the
conflicting goal of minimizing the square deviations and maximizing
the smoothness of the fit. Further developments using thin plate re-
gression splines and tensor product splines allow inclusion of several
covariates in one function although, practically, computation cost
limits the numbers of interacting covariates (Wood, 2006). The func-
tional forms of partial effects of individual covariates generated by
GAMs can help construct the mechanistic models. In marine science,
GAMs have been used in modeling phytoplankton biomass (Irwin
and Finkel, 2008; Llope et al., 2009) and fish catch (Lorance et al.,
2010).

Themain physical factors affecting the upper ocean of the SCS include
the monsoon-affected spatial circulation patterns, changes in water col-
umnvertical structure due to solar radiation andwind stress, river plume
and groundwater discharge from the north, tropical typhoons,mesoscale
features such as eddies and internal waves (Hu et al., 2000; Wong et al.,
2007). The majority of these factors have a strong seasonal pattern. To-
gether with variations in geographical topography and bathymetry,
these factors cause salient spatial patterns in chemical and biological en-
vironments (Gan et al., 2010). It is a usual practice to incorporate spatio-
temporal components (e.g., geographic coordinates and sampling time)
inGAMs,which can capture the effects of someunidentified environmen-
tal factors (e.g., the inventory of organic carbon readily available to bacte-
ria) with significant spatiotemporal trends (Irwin and Finkel, 2008; Llope
et al., 2009). Although biologists would prefer the percentage of the vari-
ance explainedbypurely spatiotemporal parameters to be negligible, spa-
tiotemporal patterns may also be caused by biotic interactions, which,
sometimes chaotic, have spatiotemporal trends but are not simply corre-
lated with environmental parameters (Benincà et al., 2009; Borcard et al.,
2011). For the sake of prediction, the incorporation of easily-obtainable
spatiotemporal components is more preferable. In the following, we
also partition the full model into purely spatiotemporal and environmen-
tal sub-models to assess the contribution of each factor in explaining the
variations of bacterial abundance.

2. Methods

2.1. Sample collection and analysis

Twomilliliter seawater sampleswere collected at 3 to 12 depths from
0 to 150 m using Niskin bottles attached to a CTD rosette system in four
cruises (summer: July 18 to August 16, 2009, 79 stations;winter: January
6 to 30, 2010, 63 stations; fall: October 26 to November 24, 46 stations;
spring: April 30 to May 24, 92 stations) in the northern South China Sea
(north of 18° N; Fig. 1). The samples were fixed with seawater buffered
paraformaldehyde (0.5% final concentration) and stored at −80 °C until
analysis. Upon return to the lab, cell abundances of autotrophic
picoplankton were enumerated using a Becton–Dickson FACSCalibur
cytometer, with different populations distinguished based on side-
scattering, orange and red fluorescence (Olson et al., 1993). Yellow-
green fluorescent beads (1 μm, Polysciences)were added to each sample
as an internal standard. The exact flow ratewas calibrated byweighing a

tube filled with distilled water before and after running for certain time
intervals and the flow rate was estimated as the slope of a linear regres-
sion curve between elapsed time and weight differences (Li and Dickie,
2001). For counting of heterotrophic bacteria, SYBR Green I was added
to the sample at the final concentration of 0.01% of the original stock
(Molecular Probes Inc.) and the samples were stained in the dark at
37 °C for 1 h before being analyzed on the cytometer (Marie et al.,
1997). The cells were distinguished based on side-scattering and green
fluorescence. The abundance of heterotrophic bacteria was calculated as
the difference between the abundance of total bacteria and that of auto-
trophic bacteria estimatedwithout staining. As counting by the cytometer
has been shown very accurate (coefficient of variationb1%), we did not
run replicates during analysis.

Temperature (Temp), salinity (Sal), and pressurewere determined by
a CTD system (Seabird 911). Mixed layer depth (MLD) was determined
as the first depth where the temperature difference with that at 5 m
exceeded 0.2 °C (Steinhoff et al., 2010). Nitrate and phosphate concen-
trations were measured following the methods of Parsons et al. (1984).
The detection limits ranged from 0.1 to 0.3 μmol L−1 for nitrate and
were 0.08 μmol L−1 for phosphate. The depth of nutricline (Nutricline)
was defined as the shallowest depth where nitrate concentrations
exceeded 0.5 μmol L−1. Total Chl a concentrations (Chl) including
monovinyl and divinyl Chl aweremeasured by high performance liquid
chromatography according to the methods of Furuya et al. (1998).

2.2. GAM modeling

We used the function ‘gam’ in the R package ‘mgcv’ developed by
Wood (2006) tomodel the functional response of abundances of hetero-
trophic bacteria (HB) on the geographic (longitude (Lon), latitude (Lat),
and sampling depth (Depth)), temporal (Month), and environmental pa-
rameters (Chl, MLD, Sal, Nutricline). In general, Chl can be regarded as a
proxy for autochthonous organic carbon source for bacteria although
sometimes there might exist a time lag between labile dissolved organic
carbon and Chl due to lysis of phytoplankton cells (e.g., post-bloom con-
dition). As we mainly focus on the spatial gradient instead of temporal
variation in this study, this should not be a serious problem. MLD de-
scribes the verticalmixing regimeof thewater column. Sal canbe consid-
ered as a proxy for freshwater input. Spatial coordinates (Lon and Lat)
were included in a single function using thin plate regression splines.
We further tested whether allowing other parameters such as Month
andDepth interacting with Lon and Lat improves themodel. As these pa-
rameters have different units with Lon and Lat, a tensor product spline
was used for these 3-dimensional interactions (Wood, 2006).

As the distributions of Chl and HB are highly right-skewed, we
loge-transformed them to log (Chl+0.001) and log (HB), respectively,
to satisfy a roughly normal distribution and to deal with the problem
of zero value. The new variables were named “logChl” and “logHB”. To
control the degree of smoothing and minimize overfitting to the data, a
penalty term was added in the regression and we set the gamma=1.4
in gam, which forces each model effective degree of freedom to count
as 1.4 degrees of freedom in the generalized cross-validation (GCV)
score. Graph plotting and statistical analysis were conducted using R
2.13.1 (R Development Core Team 2011).

3. Results

3.1. Spatial and temporal patterns

Physical parameters differed remarkably among seasons. The ranges
of sea surface temperatures were 25.3 °C to 30.5 °C (median=29.6 °C)
in summer, 16.2 °C to 25.9 °C (median=22.7 °C) in winter, 20.4 °C to
28.0 °C (median=25.3 °C) in fall, and 23.3 °C to 29.5 °C (median=
27.9 °C) in spring. Sea surface temperatures often showed onshore–
offshore increasing gradients due to coastal upwelling (induced by
the southwest monsoon and bottom topography) and the influence
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of China coast current (induced by the northeast monsoon). In sum-
mer, the lowest salinity valueswere found east of the Pearl River estuary,
indicating the eastward direction of the Pearl River plume induced by the
southwest monsoon. In other seasons, the surface salinity fields showed
that the Pearl River plume went westward along the coast.

Chl a concentrations also differed among seasons. The ranges of
surface Chl a concentrations were 0.03 to 3.71 μg L−1 (median=
0.12 μg L−1) in summer, 0.05 to 3.79 μg L−1 (median=0.58 μg L−1)
in winter, 0.16 to 3.00 μg L−1 (median=0.57 μg L−1) in fall, and
0.05 to 1.47 μg L−1 (median=0.13 μg L−1) in spring. Onshore–offshore
decreasing trends were evident in all seasons. High concentrations were
also found in areas affected by the Pearl River discharge.

The spatial distributions of bacterial abundances in surface waters
(5 m) are shown in Fig. 2A, C, E, G. A common decreasing trend of
bacterial abundances existed from onshore to offshore in all four
cruises. Except in summer where the highest bacterial abundances
were found east of Pearl River estuary, the highest bacterial abun-
dances were usually found near the coast west of Pearl River estuary,
consistent with the seasonal variations of directions of Pearl River
plume. A crude comparison of ln bacterial abundances among seasons
shows that bacterial abundances were significantly higher in winter
and fall than in summer and spring (t-tests, pb0.001).

The vertical patterns of chlorophyll concentrations and bacterial
abundances are shown in Fig. 3. In summer and spring, there were in-
creasing trends of chlorophyll concentrations and bacterial abundances
from surface to a depth of 50 m or 75 m (i.e., depth of chlorophyll max-
imum); while this increasing trend was not evident in winter and fall
due tomore thoroughmixing. Both chlorophyll concentrations and bac-
terial abundances decreased remarkably from the depth of chlorophyll
maximum to deeper layers.

3.2. Model selection

Allowing interactions among Lon, Lat, and Month using a 3-
dimensional tensor product spline significantly improves the model
(compare model a and b in Table 1), while allowing interactions
among Lon, Lat, and Depth just slightly improves the model. The use
of a 4-dimensional tensor product with Lon, Lat, Month, and Depth
not only substantially increases computation time, but does not im-
prove the model. The results of full model a capture the main features
of real observations with slight mismatches (Fig. 2).

A model consisting of pure environmental parameters (model e)
reduces the R2 to 0.76 and increases the GCV value compared with
model a (Table 1). In this environmental model, logChl is the most im-
portant, followed by Sal, Nutricline, MLD and Temp. Used as a single

predictor, logChl can explain 62% of the total variability of logHB. A
model consisting of pure spatiotemporal parameters (model c) is bet-
ter than the environmental model e, accounting for more than 80% of
the variance observed. The interaction betweenMonth and spatial co-
ordinates is again highly significant (compare models c and d).

3.3. Partial effects of individual predictors

Fig. 4 shows the functional relationships between logHB and each
individual predictor, leaving other parameters fixed. logHB increases
with Temp in an approximately linear fashion from 15 °C to 23 °C
and decreases with increasing temperature thereafter. logHB slowly
increases with logChl at low chlorophyll levels (e−6–e−3=0.002–
0.05 mg m−3), but increases roughly linearly with logChl at higher
chlorophyll levels, which are more typical in the euphotic zone.
logHB is usually invariable with Depth at 0–50 m and decreases with
depth from 50 to 100 m. Below 100 m, logHB slightly increases with
depth. logHB decreases with increasing Sal at relevant salinity ranges
(>29). logHB also decreases slightly with increasing MLD when
MLDb100 m and increases with MLD when MLD>100 m. logHB de-
creases with increasing Nutricline when Nutricline increases from 20m
to 50 m and then increases slightly with Nutricline when Nutricline be-
comes deeper.

As the interactions between spatial locations and seasons are highly
significant, we plot in Fig. 5 the spatial distributions of logHB in each
cruise after controlling other factors (i.e., logChl, Temp, Depth, MLD, Sal,
Nutricline). On average, logHB tends to be higher in January (winter)
and November (fall) and lower in August (summer) and May (spring)
(Fig. 5E). Spatially, decreasing trends from coastal to offshore regions
(particularly in May and August) and mesoscale features are evident.
Higher logHB northeast of the Hainan Island is also prevalent in the
three seasons. Note that since Sal has been controlled, the effects of
Pearl River plume are not shown on the figures.

3.4. Spatial autocorrelations

We show in Fig. 6 the effects of GAMmodeling on spatial autocorre-
lations of logHB. For the un-modeled data, the semivariance increases
sharplywith distance until roughly 6° and then decreaseswith distance,
showing a positive autocorrelation at short distances and a negative au-
tocorrelation at large distances. The variograms for the residuals of the
full model and the environmentalmodel give a relatively flat variogram
at small scales (b6°) and an increasing variogram at large scales (>6°),
suggesting that mechanisms for the unexplained variance might work
at large scales. The differences among the three variograms suggest

Fig. 1. A geographic map in the northern South China Sea showing coastlines and topography. The dots represent all sampling stations. The color key shows bottom depth (m). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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that the positive autocorrelation at small scales is induced by both envi-
ronmental similarity and geographic proximity, while the negative au-
tocorrelation at large scales is mostly contributed by environmental
similarity in remote water masses.

4. Discussion

4.1. Bottom-up vs. top-down controls on bacterial abundance

Dynamic variations of bacterial abundance are governed by both
growth andmortality terms. Bacterial growth rate can be affected by dis-
solved organic matter (Church et al., 2000; Pomeroy and Deibel, 1986),
inorganic nutrients (Rivkin and Anderson, 1997), temperature (Lopez-
Urrutia and Moran, 2007; Rivkin et al., 1996), and light (Church et al.,
2004; Mary et al., 2008). Bacterial mortality induced by bacterivory and
viral lysis (Azam et al., 1983; Proctor and Fuhrman, 1990; Vaque et al.,
2008) can be as important as bacterial growth in regulating bacterial
abundance. Thus, it is a little surprising for the relative success of our
GAMmodel (R2=0.88; Fig. 2) as it is mainly built on bottom-up factors.
The same situation can be also applied to modeling chlorophyll (Irwin
and Finkel, 2008). The high R2 using bottom-up factors as predictors
does not deny the importance of top-down factors (i.e., bacterivory and
viral lysis), which are also dependent on the same set of environmental

factors. We briefly illustrate below how environmental dependency of
rates can be translated into environmental dependency of biomass.

Both bacterial growth rate μ and mortality ratem can be expressed
as functions of temperature (T), Chl, nutrients (N), as well as bacterial
abundance (HB).

μ ¼ f T; Chl; N; HBð Þ;

m ¼ g T; Chl; N; HBð Þ

in which f and g are functions remaining to be determined.
At steady state when μ=m, B can be rearranged as functions of T,

Chl, and N. For example, if we assume

μ ¼ eα1T Chl
Chlþ A1

1−HB
C1

� �
;

m ¼ eα2T Chl
Chlþ A2

HB
C2

;

in which α1, α2, A1, A2, C1, C2 are constants. When μ=m,

HB ¼
eα1T Chl

ChlþA1

eα1T Chl
ChlþA1

1
C1

þ eα2T Chl
ChlþA2

1
C2

¼ C1

1þ e α2−α1ð ÞT ChlþA1
ChlþA2

C1
C2

; ð1Þ

Fig. 2. Comparisons between real observations (A, C, E, G) and modeled data (B, D, F, H) of ln bacterial abundances (cells mL−1) at 5 m. A, B: winter; C, D: spring; E, F: summer; G, H:
fall. Black points show the sampling stations.
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describing the dependency of bacterial abundance on temperature
and chlorophyll concentration. Thus, the functional relationships be-
tween environmental parameters and bacterial abundance obtained

from GAM modeling not only reflect environmental dependency of
growth rate but also of mortality rate.

4.2. Functional relationships between environmental parameters and
bacterial abundance

GAM allows the effects of individual environmental parameters to
be examined and the underlying controlling mechanisms being in-
ferred. The positive correlation between bacterial abundance and
temperature at low temperatures has been shown in a bivariate plot
with the data compiled globally by Li (1998) and also in local studies
(Shiah and Ducklow, 1994). Controlling other parameters, the posi-
tive relationship between bacterial growth rate and temperature
can be translated into that between bacterial abundance and temper-
ature when the effect of temperature is less in mortality than in
growth rates (e.g., α2bα1 in Eq. (1)). If the effect of T is greater in
mortality than in growth terms, bacterial abundance will decrease
with increasing T even if growth rate still increases with temperature.
Following this logic, the unimodal relationship between temperature
and bacterial abundance in Fig. 4 suggests that, at low temperatures,
the effect of temperature is greater in growth than in mortality
terms, while the converse is true at higher temperatures. Current lit-
erature reviews are not able to fully support or reject this hypothesis.
The analysis by Lopez-Urrutia and Moran (2007) implies that the
temperature coefficient of bacterial specific growth rate does not
vary along the whole temperature gradient. It is worth mentioning
that they assumed that bacterial specific growth rate is density inde-
pendent, which remains to be confirmed. Another problem in calculat-
ing bacterial specific growth rate from bacterial production data in
literature surveys is the choice of conversion factors that convert leu-
cine/thymidine incorporation to carbon assimilation. While Lopez-
Urrutia andMoran (2007) used a constant conversion factor, it is actually
a variable value thatmay relatewith bacterial growth efficiency (Alonso-
Sáez et al., 2007). An early synthesis study on bacterivory rate (Vaqué et
al., 1994) reported that the community bacterivory rate increases with
temperature at low temperatures, but reaches a plateau at high temper-
atures, which, at face value, contradictswith our hypothesis. However, in
order to fit into our model, their community bacterivory rate (bacte-
ria mL−1 h−1) needs to be converted to mortality rate (mL−1 h−1) by
dividing by bacterial abundance. The bacterial community mortality
rate also needs to be explicitly expressed as functions of T, Chl, N, and B.

Similarly, the strong positive relationship between chlorophyll
and bacterial abundance suggests that chlorophyll plays a more im-
portant role in affecting growth than mortality. A Michaelis-Menton
function relating chlorophyll and bacterial growth rate like in Eq. (1)
has been constructed by Lopez-Urrutia and Moran (2007). Again, for
the purpose of inferring rate–biomass relationships, bacterial abun-
dance needs to be incorporated into theirmodel. Similar functions relat-
ing bacterial mortality rate with Chl (and bacterial abundance), to our
knowledge, have not been shown in literature.

Fig. 3. Vertical distributions of (A) Chl a and (B) bacterial abundances in four cruises.

Table 1
Statistical summary of generalized additive models. R2 is the adjusted proportion of total variability explained by the model. GCV: generalized cross validation score. n: the total
number of samples. s: thin plate regression spline. te: tensor product spline. b is a mean constant.

Model R2 GCV n

(a) logHB=s(logChl)+s(Temp)+te(Lon, Lat, Month)+s(Depth)+s(Sal)+s(MLD)+s(Nutricline)+b 0.88 0.042 1437
(b) logHB=s(logChl)+s(Temp)+s(Lon, Lat)+s(Month)+s(Depth)+s(Sal)+s(MLD)+s(Nutricline)+b 0.82 0.053 1437
(c) logHB=te(Lon, Lat, Month)+s(Depth)+b 0.81 0.064 1604
(d) logHB=s(Lon, Lat)+s(Month)+s(Depth)+b 0.68 0.079 1604
(e) logHB=s(logChl)+s(Temp)+s(MLD)+s(Sal)+s(Nutricline)+b 0.76 0.08 1437
(f) logHB=s(logChl)+b 0.62 0.14 1500
(g) logHB=s(Sal)+b 0.32 0.22 1604
(h) logHB=s(Nutricline)+b 0.32 0.24 1534
(i) logHB=s(Temp)+b 0.13 0.29 1604
(j) logHB=s(MLD)+b 0.13 0.30 1604
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Salinity is the second important parameter in the environmental
model and can be considered as a proxy for freshwater discharge (in-
cluding riverine discharge and precipitation) that delivers terrestrial
organic matters and nutrients to the ocean. Organic matters within
the Pearl River discharge can significantly stimulate bacterial biomass
and respiration in coastal waters (Zhai et al., 2005).

The raw data show that, vertically, bacterial abundances tend to peak
at the depth of chlorophyll maximum. After controlling Chl and other en-
vironmental factors, the decrease of bacterial abundance with increasing
depthmight result from the stimulatory effect of light on bacterial growth
(Mary et al., 2008) or on growth rate and excretion of dissolved organic
matter of phytoplankton. It is also possible that grazers shift to selectively
graze on heterotrophic bacteria in deeperwaters as autotrophic preys be-
come less abundant. The slight decreasing trend of bacterial abundance
with mixed layer depth might suggest a physical diluting effect, which
is comparatively small. The decreasing trend of bacterial abundance
with increasing nutricline depth when nutricline depth ranges from
20m to 50 m may signify the effect of inorganic nutrient limitation. The
increasing trend of bacterial abundance with increasing nutricline depth
at stations with deeper nutricline depths is hard to interpret, but may re-
late with variations of chlorophyll-to-carbon ratios with nutrient avail-
ability. In nutrient limited waters, chlorophyll-to-carbon ratios tend to
be high. A same amount of Chl is associated with higher concentrations
of phytoplankton carbon, which may correspond to higher bacterial
abundance, in nutrient limited waters than in nutrient replete waters.

The most intriguing part of the GAMmodel is to interpret the spa-
tiotemporal patterns of residuals after controlling environmental pa-
rameters. The residuals were significantly greater in fall and winter
than in summer and spring (Fig. 5E). Within each season, onshore–
offshore decreasing gradients also existed, which leads us to conjec-
ture that it is something of terrestrial origin that generated these pat-
terns. In winter and fall, it is also possible that the prevailing northwest
monsoon carried some terrestrial organic matters to the SCS, leading to
greater abundances of bacteria. Therefore, we propose that one probable
factor leading to the residual patterns might relate to atmospheric depo-
sition, which is stronger in winter (Gao et al., 1997). The pronounced
high anomalies northeast of the Hainan Island (Fig. 5) may relate with
the local upwelling events (Jing et al., 2011), during which the organic
matters from the sediment re-suspensionmight support plethora bacte-
rial biomass. Itwill be useful in future studies to identify the ‘missing’ key
variables that can account for these residual patterns.

4.3. Projection of bacterial abundance with future climate change

Our model might be useful for predicting future changes of bacte-
rial abundance under the scenario of global warming. Based on the
unimodal relationship between temperature and bacterial abundance
(Fig. 4), increases in summer temperature would reduce bacterial
abundances in surface waters (but may increase bacterial abundance

Fig. 4. Partial effects of temperature (Temp), log-transformed chlorophyll a (logChl), Depth, salinity (Sal), mixed layer depth (MLD), and nutricline depth (Nutricline). The solid line is
the fitted line, while the shaded areas represent 95% confidential intervals. The numbers in the labels of y-axis denote the effective degrees of freedom.
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below the surface mixed layer), while increases of winter tempera-
ture would probably lead to abundance increases.

If we assume thatwarming promotes stratification and reduces Chl in
the oligotrophic part of the SCS (Doney, 2006), bacterial abundances
would be reduced accordingly, other things being equal. It is noteworthy
that the first derivative of the fitting curve of logHB against logChl tends

to be lower than unity (Fig. 4), which suggests that the decreasing rate
of bacterial abundance will be lower than that of chlorophyll concentra-
tion and leads to the possibility that warmingwould likely lead to higher
bacteria to phytoplankton biomass ratios. In addition, we need to assess
how the riverine discharge and precipitation regimes will change in the
future, as they are expected to affect bacterial biomass and themetabolic

Fig. 5. (A–D) Interactions between spatial locations and season after controlling Chl (=0.3 mg m−3), Depth (=5 m), Temp (=25 °C), Sal (=34 g kg−1), MLD (=50 m), and
Nutricline (=50 m). The number labels on contour lines denote ln abundance (cells mL−1) of heterotrophic bacteria. (E) A “box-and-whiskers” plot of residuals in each season
after controlling Chl, Depth, Temp, Sal, MLD, and Nutricline.

Fig. 6. Variograms of ln bacterial abundance of (A) raw data, (B) residuals of the full model, (C) residuals of the environmental model. The unit of distance is degree.
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state of the northern SCS (Zhang et al., 2008). The river discharge might
decrease in the future due to enhanced evaporation and human water
demand. Or conversely, increasing melting of glaciers in the upstream
might increase river discharge.

In summary, our exercise on modeling bacterial abundances in the
SCS using GAM provides a relatively simple and straightforward ap-
proach for understanding environmental controlling mechanisms on
bacterial abundance and for predicting future trends in bacterial abun-
dance affected by global change. The partial effect of individual variable
can be directly examined and can be relatedwith its underlying control-
ling mechanism. It is desirable to incorporate variables (such as concen-
trations of labile or semilabile dissolved organicmatters) that are directly
related with bacterial growth. While this cannot be achieved right now,
the use of surrogates (e.g., chlorophyll and salinity) can also be used for
prediction, but the interpretations are not so straightforward. After con-
trolling known environmental parameters (e.g., chlorophyll and temper-
ature), the spatiotemporal patterns of the residuals provide hints on how
some unmeasured factors affect bacterial distribution, which can stimu-
late new questions for future research. The model can be incorporated
into more complex models dealing with carbon fluxes and ecosystem
dynamics.
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