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The transition element molybdenum (Mo) possesses diverse valances (+II to +VI), and is
involved in forming cofactors in more than 60 enzymes in biology. Redox switching of the
element in these enzymes catalyzes a series of metabolic reactions in both prokaryotes and
eukaryotes, and the element therefore plays a fundamental role in the global carbon, nitro-
gen, and sulfur cycling. In the present oxygenated waters, oxidized Mo(VI) predominates
thermodynamically, whilst reduced Mo species are mainly confined within specific niches
including cytoplasm. Only recently has the reduced Mo(V) been separated from Mo(VI) in
sulfidic mats and even in some reducing waters. Given the presence of reduced Mo(V) in
contemporary anaerobic habitats, it seems that reduced Mo species were present in the
ancient reducing ocean (probably under both ferruginous and sulfidic conditions), prompt-
ing the involvement of Mo in enzymes including nitrogenase and nitrate reductase. During
the global transition to oxic conditions, reduced Mo species were constrained to specific
anaerobic habitats, and efficient uptake systems of oxidized Mo(VI) became a selective
advantage for current prokaryotic and eukaryotic cells. Some prokaryotes are still able to
directly utilize reduced Mo if any exists in ambient environments. In total, this mini-review
describes the redox chemistry and biogeochemistry of Mo over the Earth’s history.
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INTRODUCTION
Only a few transition elements (e.g., Fe, Mo, and Cu) were selected
in the evolution of life and play a fundamental role in the global
cycling of carbon, nitrogen, and sulfur (e.g., Kisker et al., 1999;
Bittner and Mendel, 2010). Molybdenum (Mo) is an essential trace
element for archea, bacteria, and eukaryotes (e.g., Williams and
Fraústo da Silva, 2002; Zhang and Gladyshev, 2008; Hernandez
et al., 2009). More than 60 metalloenzymes and proteins have been
identified containing Mo (Lippard et al., 1994; Hille, 1996; Kisker
et al., 1997; Stiefel, 1997, 1998; Kroneck and Abt, 2002; Boll et al.,
2005; NC-IUB, 2012; ExPASy, 2012), including nitrogenase and
nitrate reductase, which tie the element to the nitrogen cycle (e.g.,
Kroneck and Abt, 2002).

Although Mo is relatively scare in the Earth’s crust (1.1 ppm,
Wedepohl, 1995), it is more available to biological processes than
many other abundant metals in the crust (e.g., Al of 7.96%, Sr
of 333 ppm, and Ti of 4,010 ppm; Wedepohl, 1995) based on
water concentrations. The total dissolved Mo concentrations are
relatively low in river waters (∼5 nM; Martin and Meyback, 1979),
whereas this trace element is the most abundant transition metal in
the oxygenated ocean (dissolved Mo: 105 nM; Collier, 1985). Gen-
erally, those low-level trace elements such as Fe may potentially
limit the growth of phytoplankton in the ocean, and particularly
in the high nutrients and low chlorophyll a areas (e.g., Mar-
tin and Fitzwater, 1988; Boyd et al., 2000). Mo deficiency is not
common in natural environments, and it did, however, occur for
many terrestrial plants (e.g., Hewitt and Bolle-Jones, 1952; Gupta,
1997; Kaiser et al., 2005), and even for freshwater phytoplankton
(Dumont, 1972; Romero et al., 2011; Glass et al., 2012). Recently,

Barron et al. (2009) reported that lack of Mo may limit atmo-
spheric N2 fixation in tropical forests with highly weathered acidic
soils. Glass et al. (2010) further demonstrated that extremely low
Mo levels (<1 nmol/L) can induce N-limitation for freshwater
and coastal filamentous heterocystous cyanobacteria. Indeed, the
unavailability of Mo has been long observed as limiting N2 fixa-
tion or nitrate assimilation in coastal waters (e.g., Brattberg, 1977).
Howarth and Cole (1985) hypothesized that high levels of sulfate
in seawater might competitively inhibit algal Mo uptake in coastal
waters.

In enclosed basins, e.g., the Cariaco Trench, the Black Sea,
and the Saanich Inlet, Mo may be depleted with concentrations
of as low as 3 nmol/L, whereas the sediments there accumulated
Mo as high as 140 μg/g (Berrang and Grill, 1974; Emerson and
Huested, 1991). It seems that total dissolved Mo concentrations
in the ancient reducing ocean might be similarly low (e.g., ∼10%
of the present oceanic levels, Anbar and Knoll, 2002). Further-
more, reduced Mo probably existed in the ancient reducing ocean
too. This mini review summarizes the recent advances regard-
ing the redox chemistry of Mo in natural waters. The biological
involvements of reduced Mo over the Earth’s history are discussed.

REDOX SPECIATION OF Mo IN NATURAL WATERS
The transition element Mo possesses a wide range of different
redox species (+II to +VI). Under the current atmospheric pO2

of 0.2 atm, molybdate ions (e.g., MoO2−
4 and HMoO−

4 ) are the
most abundant chemical forms of Mo in oxygenated freshwater
and seawater systems, whilst reduced Mo(V), likely as MoO+

2 ,
MoO+

3 , and Mo2O2+
4 (e.g., Szilágyi, 1967; Loach, 1970; Bertine,
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1972; Coughlan, 1980), are expected to coexist in reducing envi-
ronments (Brookins, 1988). Under strongly reducing conditions,
Mo is expected to be further reduced to its less soluble forms
(e.g., MoO2 and MoS2). As Mo(II) and Mo(III) have never been
reported in the aquatic systems (e.g., Mendel, 2005), their natural
occurrences will not be discussed here.

The O atoms in MoO2−
4 may be replaced by S in the presence

of HS−, creating a series of thiomolybdate complexes (Helz et al.,
1996). Mo in these compounds can be further reduced to Mo(IV)
and Mo(V), forming a series of sulfido species (Miller et al., 1980;
Vorlicek and Helz, 2002). Wang et al. (2009), using a new technique
for separating Mo(V) from Mo(VI) in natural waters, quantified
the Mo(V) levels in sulfidic microbial mats and even in some
reducing waters (Wang et al., 2009, 2011). As a significant transient
intermediate during reductive diagenesis, reduced Mo(V) can be
present in specific niches, e.g., in reducing porewater. Indeed,
Mo(V) might range from 5–20 nM, accounting for up to ∼20%
of �Mo under low-sulfide conditions (<100 μmol/L; Wang et al.,
2011). Mo(V) may be further reduced to Mo(IV), as in MoS2

under strongly sulfidic conditions (HS− > 100 μmol/L; Wang
et al., 2011).

In the present ocean, the redox switching of Mo can only occur
in specific niches under bacterial mediation. For example, Mo(VI)
can be reduced to the intermediate state of Mo(V), and the reduced
state of Mo(IV) as molybdenite [MoS2(s)] by sulfate-reducing bac-
teria in the presence of sulfide (e.g., Tucker et al., 1997,1998; Biswas
et al., 2009). Some microorganisms can also oxidize the reduced
Mo (e.g., Sugio et al., 1992), and, indeed, reduced Mo can serve
as the electron donor to sustain autotrophic growth (e.g., Lya-
likova and Lebedeva, 1984). In particular, Mo(V) may be produced
from bio-oxidization of mineral molybdenite (MoS2; e.g., Brierley,
1974). Once produced, the reduced Mo(V) may be complexed and
stabilized with organic ligands naturally for a long while (Szilágyi,
1967; Bertine, 1972).

The existence of reduced Mo(V) was proposed later on as a
potential limiting factor for cyanobacterial productivity in coastal
and oceanic surface waters (Howarth and Cole, 1985; Yamazaki
and Gohda, 1990). Griffin (1975) pointed out that nitrogenase
in nitrogen fixers will not be active unless a trace amount of
Mo(V) complexes is present. Howarth and Cole (1985) specu-
lated that molybdate might be reduced extracellularly, and the
reduced Mo(V), instead of the total, might be responsible for
cyanobacterial blooms. Indeed, specific niches like anoxic micro-
zones widely exist in the present oxygenated ocean due to cellular
exudation of reduced substances and organic colloids (e.g., Car-
penter and Price, 1976; Bryceson and Fay, 1981; Paerl and Bland,
1982; Paerl, 1985; Paerl and Prufert, 1987; Ploug et al., 1997).
The diazotrophic cyanobacteria Trichodesmium could also form
anoxic microzones by aggregating together. Inside these anoxic
microzomes, the reduced Mo(V) was produced and actively
involved in N2 fixation (Howarth and Cole, 1985; Paerl, 1985;
Paerl et al., 1987).

BIOLOGICAL UPTAKE AND ASSOCIATED REDOX CHANGES
OF Mo IN CELLS
In contrast to its higher abundance in the present ocean (105 nM;
Collier, 1985), the biological requirement of Mo is relatively lower

than many other essential elements including Fe and Cu (e.g.,
Finkel et al., 2006). The molar Mo/Fe ratio is only 0.03 in bacteria
(Barton et al., 2007), and 0.005 in some eukaryotic phytoplank-
ton (Ho et al., 2003). Such a relatively lower requirement of the
element may be attributable to the limited numbers of Mo con-
taining enzymes in biology (e.g., Zerkle et al., 2005; Finkel et al.,
2006), though these are essential to basic biological processes (e.g.,
nitrogen metabolism).

Until now, both less-specific and high-affinity molybdate
uptake systems have been identified in biology (Figure 1). Previ-
ous work has confirmed that current prokaryotic and eukaryotic
cells possess efficient uptake systems to utilize this element (e.g.,
high-affinity molybdate transporter; Tejada-Jimenez et al., 2007;
Tomatsu et al., 2007; Baxter et al., 2008; Bittner and Mendel, 2010)
including ABC transporter. Eukaryotic molybdate transport might
involve more complex systems. In contrast, less-specific uptake of
oxidized Mo widely exists in the present prokaryotic and eukary-
otic cells, which utilizes other anion transporters: phosphate
(Heuwinkel et al., 1992) or sulfate transporters (Tweedie and Segel,
1970; Marschner, 1995). Work has further shown an alternative:
some soil bacteria are able to excrete siderophores (aminoche-
lin) to complex extracellular Mo, and utilize trace amount of the
element from ambient environments (Liermann et al., 2005).

Once inside cells, Mo cofactors are synthesized, and then allo-
cated to the appropriate apo-enzymes via carrier proteins (Aguilar
et al., 1992; Figure 1). These cofactors can be chaperoned to tar-
get proteins, into which they are inserted by specific trafficking
proteins in prokaryotes (e.g., Ba et al., 2009; Mendel and Schwarz,
2011). Pau and Lawson (2002) reported that some bacteria pos-
sess specific molybdate-binding protein with a capacity of storing
up to eight molybdate oxyanions for later use by the cells. As
Mo in enzymes is extremely sensitive to intracellular oxidations
such as reactive oxo species (Rajagopalan and Johnson, 1992), it
is well protected within the storage proteins (e.g., Massey et al.,
1970; Aguilar et al., 1992; Ichimori et al., 1999; Fenske et al., 2005;
Schemberg et al., 2008; Hernandez et al., 2009; Figure 1). With
the protection, Mo can easily switch redox states, and be actively
involved in transferring electron/proton and even oxygen (e.g.,
Swedo and Enemark, 1979).

The Mo enzymes generally include two types of cofactors on the
basis of the structure: Mo-co and Fe-Mo-co. Fe-Mo-co is a unique
poly-metallic compound (MoFe7S6), which has been found only in
Mo nitrogenase (e.g., Howard and Rees, 1996; Einsle et al., 2002).
Two alternative nitrogenases (Fe and V) will not be discussed here.
Mo nitrogenase catalyzes the ATP-dependent reduction of atmo-
spheric dinitrogen to bioavailable ammonia, which represents the
key point of entry of reduced nitrogen into the food chain (Burris,
1991; Burgess and Lowe, 1996; Hu et al., 2008). In the catalytic
reaction, the N≡N triple bond is broken and therefore N2 is being
reduced at a sterically protected, single Mo center (Fe-Mo-co; Yan-
dulov and Schrock, 2003). Mo-co is a mononuclear Mo atom
coordinated to the sulfur atoms of a pterin. The task of the pterin
is to position the catalytic Mo atom correctly within the active cen-
ter, to control its redox behavior, and to participate in the electron
transfer to and from the Mo atom (Mendel and Bittner, 2006).
Mo-co containing enzymes are ubiquitous in archae, bacteria,
and eukaryotes (Williams and Fraústo da Silva, 2002; Zhang and
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FIGURE 1 | Schematics of Mo uptake and storage in prokaryotic and eukaryotic cells. Routes represented by dashed lines were only identified in
prokaryotes, while routes represented by solid lines occurred in both current prokaryotes and eukaryotes. Green dots refer to reduced Mo species, and red
dots refer to oxidized Mo (molybdate).

Gladyshev, 2008; Hernandez et al., 2009), including four families:
xanthine oxidase, aldehyde oxidoreductase, sulfite oxidase, and
dimethylsulfoxide reductase. This mini review will only discuss a
few Mo-co-containing enzymes critical in the cycling of sulfur and
nitrogen. Among them, sulfite oxidase catalyzes the conversion of
sulfite to sulfate, which is the terminal step in the metabolism
of sulfur-containing compounds (e.g., cysteine and methionine)
in bacteria, plants, and mammals (Cramer et al., 1979). Polysul-
fide reductase, another group of Mo-containing enzymes, converts
polysulfide (as sulfur) to H2S (Stiefel, 1993). Nitrate reductase cat-
alyzes the first step of nitrate reduction during nitrate assimilation
for all autotrophs including higher plants and algae (e.g., Eppley
et al., 1969; Butler et al., 1999; Campbell, 1999; Morozkina and
Zvyagilskaya, 2007).

Mo may exist in several different redox states in these enzymes:
e.g., oxidized Mo(VI), intermediate Mo(V), and reduced Mo(IV)
forms. Two electron transfer or one oxygen transfer reactions
are coupled with Mo(IV) oxidation to Mo(VI), and the active
Mo(IV) state is regenerated by two subsequent one-electron trans-
fer reactions through the intermediate Mo(V) state (Kisker et al.,
1997). Those one-electron transfer reactions are carried out
by switching the redox pairs: Mo(IV)/(V) or Mo(V)/(VI). The
intermediate Mo(V) can act as an interface between one- and
two-electron redox reactions, and catalyzes a variety of reac-
tions using water or H2S as the electron donor (Hille, 1999,
2002). Mo(V) is generally produced from Mo(IV) by trans-
ferring a reducing equivalent or from Mo(VI) by accepting an
electron (e.g., Barber et al., 1987). Hence, Mo(V) levels in cells
could account for as high as 50% of the total intracellular Mo
(Hille and Massey, 1985).

INVOLVEMENT OF REDOX SPECIATION OF Mo IN THE
EVOLUTION OF LIFE
In the present oxygenated ocean, reduced Mo species have only
been confined to specific niches including cytoplasm (e.g., Hille
and Massey, 1985), sulfidic mats, and some reducing waters (Wang
et al., 2009, 2011). These reduced Mo species might, however, be
abundant in the ancient reducing ocean, e.g., in the ferruginous
Archaean and the sulfidic Proterozoic (Figure 2). The existences
of diverse Mo redox species probably facilitated the emergences of
Mo enzymes (or prototypes) catalyzing metabolic reactions in the
cycling of carbon, nitrogen, and sulfur, and finally the evolution
of bacteria and eukaryotes, which possess Mo enzymes (Figure 2).

The Archaean ocean (3.5 ∼ 2.2 billions years ago) was gen-
erally characterized by reduced species including NH+

4 , Fe(II),
and a small amount of HS− (Zerkle et al., 2005; Fani and Fondi,
2009). At this stage, Mo was mostly released from volcanoes and/or
hydrothermal vents (Nisbet, 2000). Different redox species (IV, V,
and VI) probably coexisted together under such reducing condi-
tions. MoS2 has an extremely low solubility in aqueous solutions
(Ksp = 10−43, Garrels and Christ, 1965), and MoS2−

4 is eas-
ily adsorbed onto mineral particles and organic materials (Helz
et al., 1996). Both processes resulted in low levels of the total
dissolved Mo, and instead increased the proportion of Mo(V).
The existence of intermediate Mo(V), and redox switching of
Mo, therefore, faciliated the elctron transfer at this stage, and
were essential in functioning of Mo-co containing enzymes, cat-
alyzing certain reactions for carbon, nitrogen, and sulfur cycling
since reduced Mo(V) are essential in N2 fixation (Griffin, 1975;
Howarth and Cole, 1985; Yamazaki and Gohda, 1990). Yandulov
and Schrock (2003) reported that all reduced species of Mo (+II
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FIGURE 2 | Evolution of the Mo redox dynamics along with key elements of O, S, and Fe in the ocean over the Earth’s history. Evolutionary sequence of
major life forms is shown at the lower panel. Note: the detailed and complex evolution of both chemical composition and life forms are smoothed out for
simplicity.

to +V) are involved in catalytic reactions of N2 fixation in nitro-
genase. As all Mo redox species (+II to +VI) probably existed in
the Archaean ocean, the abundance of CO2 and N2, and lack of
NH+

4 finally prompted the emergence of Mo nitrogenase, which
efficiently fixes atmospheric N2 to bioavailable NH+

4 . In the late
Archaean ocean, as the source of electrons for the photosynthesis
switched from HS− to H2O for increased energy production, pho-
tosynthetically produced O2 increased accordingly (e.g., Anbar
and Knoll, 2002; Figure 2) until a slight oxygenation of the
atmosphere occurred gradually between 2.4 and 2.2 billions
years ago (e.g., Farquhar et al., 2000; Kasting and Siefert, 2001;
Figure 2).

In the Proterozoic ocean (2.2 ∼ 0.6 billions years ago), ter-
restrial input of SO2−

4 along with MoO2−
4 predominated due to

the slightly increased atmospheric pO2 (e.g., Anbar and Knoll,
2002). Paradoxically, sulfate-reducing bacteria also developed,
and a sulfidic Proterozoic ocean was, therefore, formed at least
near the shelves (e.g., Saito et al., 2003). The redox reactions of
Mo between Mo(VI) and Mo(IV) at this stage were likely medi-
ated by sulfur photoautotrophs and sulfate reducers (Anderson
and Spencer, 1949). With the further increase of atmospheric
pO2 in the late Proterozoic, reduced species of Mo were only

confined to limited niches including sulfidic waters/sediments
and microzones, whilst all oxyanions including nitrate and sulfate
became abundant in the ocean. New Mo uptake and storage sys-
tems evolved in order to efficiently utilize the ambient molybdate
via either high-affinity uptake or less-specific uptake. A series of
Mo-co-containing enzymes were newly formed (e.g., Zerkle et al.,
2005) to utilize the abundant sulfate and nitrate (e.g., Nicholas
et al., 1963; Scott et al., 2008; Wille et al., 2008). New eukaryotes
with more efficient molybdate uptake systems (Thiel et al., 2002;
Zahalak et al., 2004) and specific storage proteins protecting the
sensitive reduced Mo within cytoplasm eventually evolved along
with eukaryotes on Earth probably about 1.5–1.0 billion years ago
(e.g., Ba et al., 2009).

SUMMARY
Mo has been considered as one of the most important elements
dictating the evolution of life. This mini-review summarized the
current findings regarding redox speciation of Mo in natural
waters. The contemporary observations of reduced Mo led to
the hypothesis that these reduced Mo also existed in the ancient
reducing ocean (e.g., in the ferruginous Archaean and sulfidic
Proterozoic). The versatile redox chemistry of Mo ranging from
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+II to +VI facilitates electron transfer and even oxygen transfer
in reactions of carbon, nitrogen, and sulfur in biology. Simi-
larly, redox switching of Mo might be essential in the evolution
of Mo enzymes catalyzing different electron and oxygen transfer
reactions.

In the ferruginous Archaean, reduced Mo such as Mo(V)
might fundamentally contribute to the metabolic reactions of
nitrogen and sulfur by forming nitrogenases and other Mo-
containing enzymes. In the sulfidic Proterozoic, redox switching
of Mo probably coupled with the sulfur cycling initially. The fur-
ther increasing of photosynthetically produced O2 constrained
reduced Mo only within specific niches including microzones,
cytoplasm, and reducing sediments/waters. New eukaryotes with
active uptake and storage systems developed in order to uti-
lize oxidized molybdate, and a series of Mo-containing enzymes

for nitrate assimilation and sulfur detoxification also evolved
later on.
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