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Abstract Magnetic parameters have been widely used as

a rapid, cost-effective, and non-destructive method. To

assess whether their magnetic properties reflect the devel-

opment history in the Pearl River Delta, three sediment

cores collected from South China coastal waters were

selected for magnetic research. The results indicate that the

predominant ferrimagnetic mineral is magnetite, with an

additional smaller amount of surprisingly high-coercive

greigite. Fine-grained superparamagnetic and single-

domain particles of magnetite and the relative contribution

of greigite are increased when the total concentration of

ferrimagnetic minerals is higher. Three well-known stages

of the Chinese history, i.e., iron smelting, cultural revolu-

tion, and the latest phase of opening and reforming were

identified in the vertical variation of magnetic concentra-

tion parameters. Although the record of the three cores is

not completely consistent, the results point out that mag-

netic concentration parameters can reflect the development

and pollution history in surrounding coastal areas.

Keywords Magnetic mineralogy � Environmental

implication � Coastal sediments � South China

Introduction

Environmental magnetism has been widely used for

paleoclimate reconstruction, e.g., rainfall estimation, as

well as sediment provenance analyses (Evans et al. 1997;

Maher 2007; Wang et al. 2009). Magnetic properties of

marine sediments can often contribute reliable information

on environmental change (Kumar et al. 2005; Sangode

et al. 2007; Yang et al. 2008; Alagarsamy 2009; Zheng

et al. 2010) and magnetic parameters such as magnetic

susceptibility (MS) became a kind of basic data for marine

sediment research (Evans and Heller 2003; Yim et al.

2004; Ghilardi et al. 2008; Meena et al. 2011). As a fast

and cost-effective parameter, MS also has been success-

fully used as a proxy for the detection of anthropogenic

pollution caused by metallurgical dusts, fly ashes from

power plants and urban airborne particulates (Bityukova

et al. 1999; Jordanova et al. 2003; Gautam et al. 2004; Lu

et al. 2007). Furthermore, previous studies have shown the

potential of magnetic properties for assessment of pollu-

tion in coastal areas (Plater et al. 1998; Plater and Appleby

2004; Ridgway and Shimmield 2002; Martins et al. 2007).

Magnetic materials from industries and traffic are taken by

water runoff or wind and then deposit in estuary and

marine sediments (Locke and Bertine 1986). Therefore,

magnetic signals from such deposits may be helpful to

reconstruct the development or pollution history in the

surrounding areas.

While numerous studies concerned the relationship

between MS and the development or pollution history

using sediments from lakes or man-made ponds (Hu et al.

2003; Power and Worsley 2009), the use of magnetic

properties from coastal sediments for such purpose has

been limited because of multiple influencing factors.

Magnetic minerals and their sources must be determined
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before one can relate magnetic parameters of marine sed-

iments to the development history (Hilton 1987; Yu and

Oldfield 1989). Some researches (Zhang et al. 2001; Horng

and Chen 2006; Garming 2006) discussed magnetic min-

eral assemblages and their influencing factors for intertidal

and marine sediments. However, the mechanism between

magnetic properties and minerals within coastal sediments

remains unclear.

In the present paper, magnetic properties of coastal

sediments from the South China Sea are investigated. The

surrounding area of the PRD has been experienced a spe-

cific development history since the establishment of the

People’s Republic of China in 1949. Hong Kong began its

labor-intensive manufacturing activities and became a

major exporter of clothing and toys, as well as watches and

transistor radios since the early 1950s (Sung et al. 1996).

Industries developed quickly in China mainland after the

liberation war and establishment of the PR China, espe-

cially during the periods of the first and second 5-year-

plans. Industrialization was rapidly promoted within this

area, since the Central Government of China implemented

its ‘‘open door’’ policy from late 1970s (Lo 1989; Lin

1997). The main purpose of the present study is to seek for

the indication of magnetic parameters on magnetic min-

eralogy within these sediments, and then to discuss the

feasibility of using magnetic parameters of coastal sedi-

ments to interpret the development or pollution history in

the surrounding areas.

Materials and methods

Sample sites and dating

Core samples analysed in the present paper were collected

from southern Chinese coastal waters in summer 2009,

using box-type samplers. Figure 1 shows the location of

the sampling sites. Cores A8 (21.8�N, 114.2�E) and A9

(22.0�N, 114.0�E) mainly reflect terrigenous input of the

Pearl River (Zhang et al. 2010; Li et al. 2011). Water

depths of these two sites are 45 and 33 m, respectively.

Sampling site E601 (20.9�N, 112.1�E) is located at the

southwest region of the Pearl River Estuary (PRE) and

receives part of the terrigenous materials input from the

PRE due to coastal currents (Fig. 1; Liu et al. 2010a); water

depth at site E601 is 53 m. Total lengths of cores A8, A9,

and E601 are 58, 54, and 40 cm, respectively. After ship-

ping to laboratory, the cores were subsampled into indi-

vidual specimens, using 2-cm spacing, and were freeze

dried.

The 210Pb method was used for dating (Nittrouer et al.

1979) measurements were performed using an Ortec HPGe

GEM/Lo-Ax/GMX at the Institute of Earth Sciences,

Academia Sinica, Taiwan (Huh et al. 2006). International

standard reference materials (NBS-4353, IAEA-133A, 327,

375) were used for energy, efficiency and mass calibration

for every detector. Constant 210Pb activities in the lower

portions of the cores are assumed to represent supported

Pb, and this value was subtracted from total activity to

yield excess 210Pb activity. Because each core displayed

log-linear excess 210Pb profiles when plotted against

cumulative mass, the constant initial concentration (CIC)

model was used for age and sediment mass accumulation

rate (MAR) calculation (Krishnaswami et al. 1971).

Accordingly, core A8 was found to span a history from

1880 to present, core A9 from 1920 to present, and for core

E601 an age of 1905 is found at depths of 28–30 cm.

Details of the dating method and age calculations will be

published elsewhere (Chen et al. in preparation).

Mineral magnetic analysis

Grain size and concentration of magnetic minerals within a

sample can be identified from magnetic properties. A suite

of mineral magnetic analyses were performed in this study.

MS along the cores and temperature variation of MS were

measured at the Guangzhou Institute of Geochemistry,

Chinese Academy of Sciences. All other magnetic mea-

surements were performed at the Department for Geosci-

ences, University of Tuebingen.

Low (976 Hz) and high (15,616 Hz) frequency suscepti-

bility (mass-specific vlf and vhf, respectively) were measured

using a Kappabridge MFK1-FA (AGICO). Frequency-

dependent magnetic susceptibility (vfd) was calculated from

the expression vfd (%) = [(vlf - vhf)/vlf] 9 100. Variation

of MS with temperature (j–T curves) was measured using

CS4/CSL high- and low-temperature units attached to the

E601

A8

A9

Guangzhou

Hongkong

Macau22°

21°

22 N° 

21°

112°111° 113° 114° 115°

112°111° 113° 114° 115 E° 

N
South

Chin
a

Sea

PR
E

Fig. 1 Location of sampling cores. PRE denotes the Pearl River

Estuary; the shaded area represents the area within the South China

Sea which receives material from the PRE due to coastal currents

(modified from Liu et al. 2010a). The location of cores A8 and A9 are

supplied with material by the Pearl River currents
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Kappabridge MFK1-FA. Anhysteretic remanent magneti-

zation (ARM), expressed as susceptibility of ARM (vARM) in

this paper, was imparted with an AF peak field of 100 mT

and a DC biasing field of 0.1 mT using a 2G-755 magne-

tometer. Stepwise thermal demagnetization of triaxial iso-

thermal remanent magnetization (IRM) (applied fields 1.0T,

0.3T, and 0.1T) and alternating field (AF) demagnetization

were performed using a 2G-755 magnetometer. Hysteresis

parameters, which are helpful to identify the type and par-

ticle size of magnetic minerals (Day et al. 1977; Dunlop

2002a, b; Zan et al. 2010), were measured using a MicroMag

2900, with a maximum applied field of 0.5 T. IRM acqui-

sition curves were determined using a MMPM9 pulse mag-

netizer (maximum applied field 2.5 T) and a Molspin

Minispin magnetometer. The contribution of different

magnetic components was quantified using the IRMUN-

MIX2_2 and IRM_CLG1 routines to analyse cumulative

log-Gaussian (CLG) IRM acquisition curves (Kruiver et al.

2001; Heslop et al. 2002; Gong et al. 2009).

Results

Thermal variation of magnetic susceptibility

Variation of MS with temperature (j–T curves) is widely

used to identify the type of magnetic minerals (Evans and

Heller 2003). Low- and high-temperature measurements

are illustrated in Fig. 2 for surface sediments from all three

cores (A8, A9, E601) and for samples from different depths

(0–2, 8–10, 38–40 cm) within core E601.

Low-temperature j–T curves show a high paramagnetic

contribution and a clear Verwey transition (Liu et al.

2010b) between -160 and -140 �C within cores A9 and

A8, but not so obvious for E601, indicating the presence of

magnetite. Samples from all cores and all depths display a

very similar behavior in the heating curves. The j value

dramatically increases after heating above 450 �C due to

new formation of magnetite. A small decrease around

300 �C during heating suggests the existence of iron sul-

fides. A Curie temperature of magnetite in the heating

curves in conjunction with a constant j value below

450 �C indicate that initial magnetite is existing in the

surface samples of all cores. However, the relative increase

of j in E601 is clearly higher than in A8 and A9, probably

because of a lower initial content of magnetite.

IRM acquisition and CLG analysis

Results of CLG analysis reveal a low-coercivity phase

(likely representing magnetite) and a high-coercivity phase

for all studied samples (Fig. 3). Contributions to IRM are

*77–89 and *11–23 %, with B1/2 varying between

*37–44 and *216–769 mT for the soft and hard coercive

components, respectively. The results indicate that the first

component (magnetite) is the predominating magnetic

mineral.

Thermal and alternating field demagnetization of IRM

Thermal demagnetization (ThD) and alternating field

demagnetization (AfD) of saturation IRM (SIRM) were

performed to determine the type of the ferrimagnetic

mineral indicated by the decay around 300�C in the j–

T curves and by the higher coercivity component in the

CLG analysis. A drop between 300 and 320 �C is also

occurring during ThD of a triaxial SIRM (in particular, in

the direction of highest acquisition field) and susceptibility

measured after each step of ThD (Fig. 4a, b) indicating that

iron sulfides are existing in the sediments (Roberts 1995;

Sagnotti et al. 2005). A gyroremanent magnetization

(GRM) is obvious above about 60 mT during AFD

(Fig. 4c), which is a strong hint that greigite is present in

the samples (Hu et al. 2002; Roberts et al. 2011).

Discussion

The CLG analysis has demonstrated the presence of two

components, from which the lower coercive one (compo-

nent 1) represents magnetite while the harder coercive one

(component 2) is likely related to greigite. The presence of

greigite is mainly identified by GRM acquisition. Greigite

is clearly contributing to magnetic remanence as evidenced

by thermal demagnetization of the 1.0 T IRM. On the other

hand thermal runs of MS show only a weak indication of

greigite which can be explained by its high coercivity in

these samples. The so far reported values for coercivity of

greigite span a relatively wide range, but do not reach more

than about 100 mT (Hoffmann 1992; Roberts 1995; Chang

et al. 2007). However, Chang et al. (2008) investigated

magnetic properties for pure synthetic greigite and found

that it is not fully saturated even in a 5-T field. We

therefore conclude that in these analyzed samples, MS is

mainly controlled by the magnetite concentration while

remanence parameters as ARM and (S)IRM are influenced

by both the magnetite and the greigite concentrations.

The magnetic grain size can be characterized by the Day

diagram (Day et al. 1977), i.e., using the saturation rema-

nent magnetization to saturation magnetization ratio (Mrs/

Ms) together with the remanent coercivity to coercivity

ratio (Hcr/Hc). Values of Mrs/Ms and Hcr/Hc are between

0.15–0.21 and 1.91–2.05, respectively, indicating that the

magnetic domain state of the grains in these sediments is in

the pseudo-single-domain range (Evans and Heller 2003;

Dekkers 2007). However, the Day diagram is strictly only
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Fig. 3 a LAP for a sediment sample mixture of component 1

(average contribution *82 %, average B1/2 *39 mT) and component

2 (average contribution *18 %, average B1/2 *414 mT). Squares
represent input data. Short- and long-dashed lines represent

component 1 and component 2, respectively. Solid lines represent

the sum of the components. b GAP analysis for the sediment sample.
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valid for magnetite, and the greigite content may distort the

interpretation of hysteresis parameters (Chang et al. 2008;

Roberts et al. 2011). Frequency-dependent MS (vfd) indi-

cates the relative contribution of superparamagnetic (SP)

particles (Thompson and Oldfield 1986). Figure 5 shows a

positive correlation of vlf with vfd (%) and vARM. From this

result, it can be inferred that fine-grained (SD and SP)

particles of magnetite (and possibly also greigite) play a

more important role for samples with a higher total ferri-

magnetic content. A significant positive correlation found

between GRM intensity and ARM (Fig. 6) indicates that

greigite is enhanced when the total concentration of ferri-

magnetic constituents is higher. Furthermore, higher con-

tribution of component 2 (higher coercivity phase)

corresponds to higher low-frequency mass-specific MS

(vlf) (Fig. 6), indicating that for larger ferrimagnetic con-

tents the second component (greigite) is more enhanced

than the first (magnetite) one.

Contributions of the second component appear to have an

increasing trend from E601, A8, to A9 (Fig. 6), which

seems to be related to the distance between the core location

(i.e., sedimentation area) and the material sources around

the PRE Though vlf of sediments from core E601 is lower

than for cores A8 and A9, vfd (%) for core E601 reaches the

same values as cores A8 and A9. The role of water transport

may explain this result. Compared to A8 and A9, core E601

receives a lower portion of ferrimagnetic particles in total,

but smaller ferrimagnetic grains from the PRD may be

transported through a longer distance.

Magnetic enhancement of both magnetite and greigite is

likely related to environmental pollution of the surrounding

areas. Many previous studies suggested that iron sulfides are

of importance in polluted environments (Dekkers and

Schoonen 1994; Cornwell and Morse 1987; Snowball and

Torii 1999; Power and Worsley 2009). As discussed above,

greigite is existing within the coastal sediments and its

concentration is mainly appearing in magnetic remanence

parameters (ARM and SIRM) while in the magnetic sus-

ceptibility signal magnetite is clearly dominating. Although

variation of magnetic parameters is not completely consis-

tent for the three cores, three stages related to well-known

development phases in China can be identified from the

vertical variation of the magnetic parameters illustrated in

Fig. 7. Phase A recorded by cores A9 and A8 with an

increase of concentration parameters v, SIRM, and ARM is

related to the iron smelting phase in China mainland toge-

ther with labor-intensive manufacturing activities in Hong

Kong from 1950s to early 1960s. Iron phases and sulfur, one

of the fossil fuel combustion products, can deposit directly

or indirectly into coastal waters. Magnetite and different

iron sulfides, including greigite, can form through a series of

chemical and microbially mediated reactions within a

reductive environment as coastal brackish water (Canfield

1989). An obvious decrease in ferrimagnetic concentration

recorded by core A8 (phase B in Fig. 7) can be explained by

a decrease of iron phases and sulfur discharge due to the

cultural revolution in China mainland after mid-1960s when

industrial development was nearly stopped (Clark 2008).
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Industrialization has been promoted since the ‘‘open door’’

policy was implemented from late 1970s, especially after

the PRD was designated as an Economic Zone by the State

Council of People’s Government of China in 1985. More

and more iron phases and sulfur were discharged from

recently established factories related to industries such as

electronics, apparel, cement, etc. (Sung et al. 1996). As a

result, concentration-dependent magnetic parameters v,

SIRM, and ARM increased continuously during the last

decade (pointed out as phase C in Fig. 7). Despite values of

magnetic concentration parameters are higher in A9 than

A8 and E601, a slight decrease instead of an increase appear

s in core A9 during this period. As many previous research

suggested (Berner et al. 1979; Cutter and Velinsky 1988;

Fig. 7 Vertical variation of MS, ARM, and SIRM with corresponding 210Pb dates (numbers on phased lines are 210Pb dates) for the three cores
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Torii et al. 1996; Sternbeck and Sohlenius 1997), magnetite

can transform to iron sulfides within the reductive envi-

ronment of coastal waters. Compared to A8 and E601,

contribution of component 2 (greigite) reached a relatively

high level in sediments of core A9 (Fig. 8a). More greigite

and less magnetite may be one reason for the ‘missing

decrease and increase’ of concentration parameters in core

A9 after 1960 (Hu et al. 2002; 2003). However, the

threshold of the ratio between greigite and magnetite for

MS reduction remains unknown. Unlike core A8, magnetic

granulometry parameters, vARM/v and ARM/SIRM, which

are sensitive to SD particles (Thompson and Oldfield 1986;

Egli and Lowrie 2002) show a decreasing trend since 1980s

for core A9 (Fig. 8b, c) indicating that relative concentra-

tion of SD particles decreased.

Conclusion

Main magnetic minerals in the sediments from South China

coastal waters are magnetite and probably some high-

coercivity greigite; greigite is more enhanced than mag-

netite when the total concentration of magnetic minerals is

higher. In such samples with increased ferromagnetic

content fine-grained (SP and SD) ferrimagnetic particles

play a more important role.

Three stages corresponding to specific well-know events

in China were identified from the vertical variation of

magnetic parameters. The iron-smelting phase and the

opening and reforming phases in China are expressed by

increasing values of magnetic susceptibility and magnetic

remanences. A decreasing trend of these concentration

parameters was observed during the cultural revolution

when industrial development almost stopped. Core A9 does

not reflect the trends after 1960. The reason may be an

increasing content of greigite on expense of SD magnetite

due to a reductive environment (Hu et al. 2001; Yue and

Huang 2005). Though more work has to be done to study a

denser net of cores, it can be optimistic that magnetic

concentration parameters in coastal sediments can reflect

the development history in the Pearl River delta.
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